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Abstract 

51 drug drug interactions were evaluated by comparing drug exposure values (AUC) assessed based on 

pharmacokineticly relevant drug properties with published in vivo data. For this purpose the MDDI Calculator of 

SCHOLZ DataBank was used. It can be concluded that the MDDI Calculator is able to compute changes of drug 

exposure in pairwise kinetic DDIs in a very reliable and excellent manner. Furthermore, based on the property 

settings of ingredients according to the available pairwise in vivo data, AUC changes for multiple pharmacokinetic 

drug drug interactions (MDDI) may be predicted. The predictive power of the MDDI calculator for multiple drug 

drug interactions is very well confirmed when looking at the few multiple drug drug interactions where in vivo data 

is available. Regarding in summary all 51 pairwise and 3 triple drug drug interactions researched, the AUC values, 

in all cases assessed with less than +- 10% deviation from in vivo data, surpassed substantially the set “excellency” 

target range of 100% +- 24%. 

 

Introduction 

A theory of Multi(Ple) Drug Drug Interactions (MDDI) and its impact on the assessment of pharmacokinetics and 

adverse effects of drugs has been published in 2016 [1]. The MDDI Calculator of SCHOLZ Databank was the result 

of the translation of this theory into a drug search engine software with the target to compute and predict changes of 

drug exposure and dose adjustments in complex drug interaction scenarios in a reliable and fast manner whereby the 

formulas should preferably relate to basic pharmacokinetic equations and be confined to simple basic mathematical 

rulings. 
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Founder of SCHOLZ DataBank, 1270 Avenue of the 

Americas, 7th Floor, New York, NY 10020, USA 
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The vision to realize such a search engine required to abandon the traditional model of Drug Drug Interactions 

(DDI) analyzing solely pairs of drugs and to develop a more general theory of Multi Drug Drug Interactions 

(MDDI). In this theory the relevant pharmacokinetic parameters of drug exposure such as AUC and dose and their 

relative changes are derived and assessments computed according to kinetic rulings based on the interplay of all 

properties and drug interaction mechanisms for all drugs involved as substrates or inhibitors of transporter and 

enzyme systems in absorption, metabolism and elimination. 

The fundamental pharmacokinetic relationship for AUC as function of bioavailability F and elimination constant Kel 

is [2]: 

AUC ~ F/Kel 

This applies also for relative changes due to drug drug interactions: 

AUCrel ~ Frel/Kelrel 

F and Kel are furthermore functions of the properties of the substrates and the inhibitors/inducers, which affect 

transport, metabolism, and elimination. These properties are converted into the relevant kinetic values in a more 

refined and aggregated manner using % scales compared to the rougher classification of the FDA [3], which assigns 

inhibitors to three classes: 

 weak inhibitors: increase the AUC of a sensitive substrate by factor 1,25 – <2 

 moderate inhibitors: increase the AUC of a sensitive substrate by factor 2 – 5 

 strong inhibitors: increase the AUC of a sensitive substrate by more than factor 5. 

Simple considerations lead to the conclusion that refinement of the FDA system is necessary: A “moderate” 

inhibitor may increase the plasma level of a substrate by factor 2 or 4,99. In the first case, a dose reduction to half of 

the original dose may be necessary, in the second case the dose should be reduced to a fifth of the original dose. 

These differences of the AUC changes are obviously high and particularly in cases of narrow therapeutic index not 

acceptable. Thus, the sole use of the three FDA classifications may be helpful to classify drug properties roughly, 

but it is not precise enough to assess the correct dose adjustments due to kinetic interactions. 

The MDDI Calculator of SCHOLZ Databank regards each transporter or metabolizing enzyme as a biochemical 

micro engine the performance of which depends on the propensity of a substrate to be transported or metabolized 

(STPR/SMPR = Substrate Transporter/Metabolizing Pathway Relevance in %) and the propensity of an inhibitor to 

block the process and controlling thereby the TransPorter/Metabolizing Enzyme Capacity (TPC/MEC in %) 

affecting F/Frel as function of F (absolute bioavailability), FP (First Pass Effect), TPC and Kel/Kelrel (elimination 

constant in %/h) as function of SMPR and MEC. Applying different propensity settings for all micro engines 

involved and aggregating such settings in a multidimensional model AUCrel = AUCcomp values of a substrate can be 

electronically computed and tapered to consistency with in vivo study AUCrel =AUCstudy values whereby AUCrel is 

defined as the quotient of the AUC affected by an inhibitor and the AUC under normal conditions 

AUCrel = [AUCinh]/[AUC] 

Early attempts in the development to calibrate the MDDI Calculator showed good consistency of computed AUC 

values and in vivo measurements published in the literature [1]. Literature presenting in vivo data about multiple 

drug drug interactions such as published by Niemi et al. [4,5] with at least two inhibitors affecting the kinetics of a 
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substrate is rare. The confirmation of the MDDI method for multiple interactions could therefore only be performed 

based on these studies by Niemi et al. for repaglinide and loperamide as substrates, and additionally for aripiprazole 

in consistency with PBPK simulation data [6]. 

Table 1 compares the in vivo results of Niemi et al [4,5] for inhibitor scenarios with the triple drug drug interactions 

of loperamide – itraconazole – gemfibrozil and repaglinide – itraconazole – gemfibrozil and the consecutive 

assessment of the AUCrel values with the calculations of the MDDI Calculator of SCHOLZ DataBank. 

Table 1: AUC data from in vivo investigations compared with values from the MDDI calculator of Scholz 

Databank. 

Drugs relative AUC (in vivo 

data) [4,5] 

relative AUC calculated with the MDDI Calculator 

of Scholz Databank 

Repaglinide–Itraconazole 1.4 1.4 

Repaglinide–Gemfibrozil 8.1 7.6 

Repaglinide–Itraconazole–

gemfibrozil 

19.4 18.9 

Loperamide–Itraconazole 3.8 3.6 

Loperamide–Gemfibrozil 2.2 2.1 

Loperamide–Itraconazole–

gemfibrozil 

12.6 12.9 

Complex MDDI scenarios consist frequently of multiple pairwise DDIs; therefore it is necessary that the search 

engine processes traditional kinetic DDIs and computes assessments of drug exposure changes in a reliable way. 

Consequently drug interaction studies, which represent AUC changes of pairwise interactions were used to calibrate 

the MDDI Calculator and refine drug properties for precise calculations, if needed. 

This contribution shall elucidate the process of calibration of the computational results of the MDDI Calculator. It 

focuses for that purpose on the interplay of clinically important CYP2D6 substrates (Table 2) and inhibitors as these 

substrates and their metabolism depend in most cases decisively on this enzyme. The fact that some of these 

substrates depend also on other enzymes such as CYP3A4 yields the advantage, however, that beyond the basic 

comparison of pairs of drugs the MDDI aspect of multiple drug drug or enzyme interactions can be included. 

Literature referred to include in vivo data from drug drug interaction studies as well as studies dealing with 

polymorphism as the patient conditions of Poor Metabolizer (PM) or Intermediate Metabolizer (IM) deteriorating 

the metabolism of a drug accord usually very well to the impacts of strong or moderate enzyme inhibitors [7]. 

Predicting AUC values compared to observed values is classified in the literature as “excellent” if deviations in the 

range of 8 – 24% are achieved [8]. Both, the European Medicines Agency (EMA) and the U.S Food and Drug 

Administration consider that bioequivalence is demonstrated, if the 90% confidence interval for the ratio of the 

generic and the original drug is between 80% and 125% [9,10]. 
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The target of this study was to achieve maximum deviations of ≤ 24% whereas in the best case AUCcomp = AUCstudy 

equals 100%. Accordingly, the target shall be achieved when the confidence interval for the assessed AUCrel = 

AUCcomp values falls into the interval of AUCrel = AUCstudy = 100% ± 24%. 

Furthermore, the propensities of metabolism or inhibition of ingredients mentioned above shall be ideally unique for 

the ingredients involved with the consequence that for example the SMPR setting for metoprolol controlling the 

metabolism at CYP 2D6 is always the same no matter which inhibitor such as fluoxetine, paroxetine, mirabegron or 

others with different strengths are interacting. Therefore, consistency of assessments made for substrates for which 

in vivo data with different inhibitors is available shall be researched. 

Most cytochrome P450 (P450 or CYP) enzyme catalyzed reactions are adequately described by classical Michaelis-

Menten kinetic parameters (e.g., Km and Vmax) [11]. As drug therapy implies normally very low drug plasma levels 

the elimination adheres usually to first order or linear kinetics and the total elimination constant Kel can be computed 

as the sum of all process constants Kel1, Kel2… Keln and their relative values, respectively, involved in metabolism 

and elimination [2,12]. All assessments in this contribution are therefore made under the assumption of such 

Michaelis-Menten kinetic conditions, too. 

 

Methods 

Workflow

 

Identification of drugs which are metabolized by CYP2D6 and data extraction for basic settings 

The identification and classification of drugs, which are metabolized by CYP2D6 and may be inhibited in a 

clinically relevant manner, was conducted with the help of the classic DDI system of the U.S. SCHOLZ DataBank 

[13], predominantly used for E-prescribing, which is based on the evaluation of literature and professional product 

information for more than 40 years; especially supportive was also literature concerning dose adjustments in patients 

with CYP2D6 poor metabolizer status mimicking DDIs with strong inhibitors as presented in the comprehensive 
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pharmacogenetic study of Kirchheiner et al. [14]. The suitable drugs for which relative AUC values (AUCstudy) from 

in vivo studies in human subjects were available are listed in Table 2, in case including hints to additional enzymes 

impacting the kinetics. Prodrugs such as codeine, tramadole, tamoxifen or drugs where the inhibition of the 

CYP2D6 metabolism does not change the drug’s active moiety and has no impact on the clinical effect and the 

dosing such as venlafaxine [28,40] were excluded. 

 

Table 2: Listing of CYP2D6 substrates including Comparison of calculated AUC values (AUCcomp) and literature 

data (AUCstudy) after adjustment of drug properties with deviation factors. 

Substrate Inhibitor AUCcomp AUCstudy Deviation Factor Literature 

Amitriptyline Ketoconazole2 126% 135% 93% 17 

Amitriptyline PM/Paroxetine6 166% 156%6 106% 14 

Aripiprazole Ketoconazole2 152% 163% 93% 6,7 

Aripiprazole Itraconazole2 148% 148% 100% 18 

Aripiprazole Paroxetine1 202% 207% 98% 6,7 

Atomoxetine Paroxetine 561% 579% 97% 19 

Clozapine Fluvoxamine234 302% 300% 101% 20 

Desipramin Fluoxetin5 416% 400%5 104% 21,22 

Desipramine Mirabegron 324% 341% 95% 51 

Desipramine Paroxetine5 404% 411%5 98% 21,22 

Desipramine Sertraline 139% 134%5 104% 43,44 

Duloxetine Fluvoxamine4 602% 600% 100% 23 

Galantamine Ketoconazole2 128% 130% 98% 24 

Galantamine Paroxetine 142% 140% 101% 24,25 

Haloperidol Itraconazol2 156% 155% 101% 26 

Haloperidol Paroxetine7 153% 154% 99% 27 

Haloperidol Venlafaxine 170% 170% 100% 28 

Imipramine Paroxetine5 372% 407%5 91% 14,22 

Imipramine Fluoxetine35 386% 407%5 95% 14,22 

Imipramine Fluvoxamine34 359% 363% 99% 22 

Mirtazapine Fluoxetine 132% 132% 100% 29 

Mirtazapine Paroxetine 117% 117% 100% 29 

Metoclopramide Fluoxetine 177% 189% 94% 30 

Metoprolol Dronedarone 162% 160% 101% 47 

Metoprolol Eliglustat 214% 210% 102% 48 

Metoprolol Escitalopram 211% 200% 106% 49 

Metoprolol Imatinib 124% 123% 101% 50 
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Metoprolol Mirabegron 315% 329% 96% 51 

Metoprolol Paroxetine5 388% 407%5 95% 52-54 

Metoprolol Propafenone 367% 350% 105% 55 

Metoprolol Ranolazine 177% 180% 98% 56 

Metoprolol Venlafaxine 137% 140% 98% 57 

Mianserin PM/Paroxetine6 153% 154%6 99% 14 

Nortriptyline PM/Paroxetine6 266% 251%6 106% 14 

Paroxetine PM/Fluoxetin6 177% 173%6 102% 14 

Perphenazine PM/Paroxetine6 404% 416%6 97% 14 

Pirfenidon Fluvoxamine34 404% 400% 101% 58 

Propafenone Fluoxetine 160% 150% 107% 55 

Propranolol Dronedaron 130% 130% 100% 47 

Risperidone Erythromycin 120% 110% 109% 59 

Risperidone Fluoxetine 135% 140% 96% 59 

Risperidone Paroxetine 135% 130%5 104% 59 

Tamsulosin Ketoconazole2 263% 280% 94% 60 

Tamsulosin Mirabegron5 147% 154%5 95% 51,61 

Tamsulosin Paroxetine 153% 164% 93% 60 

Thioridazine Fluvoxamine4 303% 300% 101% 62 

Thioridazine PM/Paroxetine6 297% 313%6 95% 14 

Trimipramine PM/Paroxetine6 374% 365%6 102% 14 

Vortioxetine Bupropion 240% 228% 105% 35 

Vortioxetine Ketoconazole2 126% 130% 97% 35 

Vortioxetine Fluconazole2,3 142% 146% 97% 35 

1AUC study for quinidine as strong CYP2D6 inhibitor 

2AUC study with CYP3A4 related inhibition 

3AUC study with CYP2C19/C9 related inhibition 

4AUC study with CYP1A2 related inhibition 

5average value from more than one publication 

6AUCstudy calculated from recommendations of dose adjustments for poor metabolizers (AUCrel = 

(1/Drel)*100), which result from several studies [14] 

7AUCstudy from measurements in subjects with poor metabolizer status 

 

Basic settings and refinement of drug properties for AUCrel assessments 

SCHOLZ DataBank assigns default % values for the relevant kinetic parameters to drugs which are according to 

literature in a minor, moderate or major way either substrates dependent on an enzyme/transporter or inhibitors of 

such enzyme/transporter as listed in Table 3. 
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Table 3: Default SMPR and MEC values are assigned according to the following table. 

Pharmacokinetic property class % value comment 

SMPR Major substrate 80% Assumption: SMPR always < 100% 

SMPR Moderate substrate 40%  

SMPR Minor substrate 20%  

MEC# Major inhibitor 1% Assumption: remaining MEC >= 1%, also with 

strongest blocker, e.g. paroxetine at CYP2D6 

MEC# Moderate inhibitor 28%  

MEC# Minor inhibitor 56%  

# Assumptions made for MEC apply also to TPC 

 

The minimum value for MEC is set to 1% when strongest enzyme blocker such as paroxetine at CYP2D6 or 

ketoconazole at CYP3A4 are involved; that is in accordance with literature asserting that even at high concentrations 

inhibition does not approach zero [11] and helps also to avoid in case unresolvable fractions.  

By adjusting pharmacokinetic properties and repeated comparisons AUCrel = AUCcomp may be electronically 

tapered to consistency with AUCrel = AUCstudy whereby the propensity settings of substrates and inhibitors should 

ideally remain stable in all computation scenarios compared. In exceptional cases where the AUCcomp value could 

not be reconciled by refinement of SMPR or MEC values with the AUCstudy value in a satisfactory manner 

placeholder enzymes were in case introduced (see discussion). 

Deviations of AUCrel = AUCcomp values from AUCrel =AUCstudy values are computed by computing the quotient 

AUCcomp/ AUCstudy as Deviation Factor in %. 

Statistical methods 

To compare the computed data AUCcomp and the in vivo data AUCstudy the Deviation Factor for each interaction was 

calculated as follows 

 

Even though more than thirty data sets are available, the Shapiro Test for normality was performed to confirm the 

explored data (AUCcomp,) show standard Gaussian distribution. Consequently a statistical analysis was made using a 

two sided one sample Student t-Test for all AUCcomp/AUCstudy values applying an error probability of α = 0.05. Not 

to reject H0 (“no significant differences between study and computed data”) demands that the 95% confidence 

interval of the Deviation Factor must be within 100% +-24%. Triple combinations were not included in the overall 

statistics. 

 

Results 
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Traditional pairwise drug drug interactions (DDI) 

Comparisons of in vivo measured relative values for AUC changes with assessments of the MDDI Calculator were 

conducted for 51 pairwise drug combinations. 44 comparisons related to CYP2D6 substrates affected by CYP2D6 

inhibitors or poor metabolizer Status. These comparisons are contained in Table 2. 

Comparisons for 7 of the substrates investigated related to enzyme CYP3A4 which may be affected additionally. 

Multiple drug drug interactions (MDDI) 

Comparisons of 5 substrates relate to multiple drug drug, respectively enzyme interactions whereby these substrates 

are affected by CYP2D6 and additional enzyme inhibitions at CYP3A4, CYP2C19, CYP2C9, or CYP1A2 through 

one and the same drug which is the “multi enzyme” inhibitor fluvoxamine [37]. 

Clinically relevant data is known for aripiprazole when used in the presence of strong CYP2D6 and CYP3A4 

inhibitors based on expected in vivo AUC increases calculated by PBPK model. The manufacturer based his dose 

adjustments on the PBPK model and recommends dose reductions by 75% [6], which accords to an AUC value of 

400% (whereby the computed AUC-PBPK value indeed is reported with 450%). The MDDI Calculator shows in the 

case of aripiprazole in combination with the strong CYP2D6 inhibitor paroxetine and with the very strong CYP3A4 

inhibitor itraconazole a stronger super additive effect than the PBPK study predicts, which leads to a deviation 

between MDDI value and study data (PBPK calculation), and with the “weaker” strong CYP3A4 inhibitor 

clarithromycin a very well matching AUCcomp of 400%, see Table 4 and also chapter Discussion. 

 

Table 4: Comparison of in vivo and computed data for multiple drug drug interactions of aripiprazole. 

Substrate Inhibitor AUCcomp AUCstudy Deviation Factor Literature 

Aripiprazole Paroxetine and Itraconazole 580% 400%-600% (PBPK) 104% 

(see discussion) 

6,7 

Aripiprazole Paroxetine and Clarithromycin 400% 400% (PBPK) 100% 6,7 

 

For tamsulosin, galantamine and vortioxetine in vivo data for concurrent inhibition of two metabolizing enzymes is 

not available from literature. The MDDI calculator can estimate a relative increase of AUC in combination 

therapies, which lead to inhibition of two or more metabolizing enzymes based on known kinetic properties of 

tamsulosin and calibration of pairwise drug interactions. Results are shown in Table 5. 

A portion of 75% of Galantamine is metabolized by hepatic enzymes with the involvement of CYP2D6 and 

CYP3A4 [33]. Furthermore, it is eliminated renally. The AUC is expected to be nearly doubled in combination with 

ketoconazole and paroxetine (Table 5). 

Tamsulosin is mainly metabolized by CYP3A4 with lesser contribution of CYP2D6, less than 10% are eliminated in 

urine unchanged [34]. Thus, the inhibition of both, CYP2D6 and CYP3A4 is expected to cause a strong super 

additive effect of AUC increase (Table 5). 

Vortioxetine is metabolized by several cytochrome P450 enzymes, especially CYP2D6, furthermore CYP3A4/5, 

CYP2C9, and to minor extent by CYP2C19, CYP2A6, CYP2C8 and CYP2B6; CYP2D6 is the major metabolizing 

enzyme [36]. Significant AUC changes of pairwise drug interactions are reported for vortioxetine in combination 
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with the strong CYP3A4 and weak CYP2C8 inhibitor ketoconazole, the strong CYP2D6 inhibitor bupropion and the 

moderate CYP3A4 and strong CYP2C9 inhibitor fluconazole. In three way combination of the drugs the MDDI 

calculator shows highly different results, which are based on the substrate as well on the inhibitor properties which 

were adjusted by pairwise interactions. Both, bupropion and paroxetine are strong CYP2D6 inhibitors, which inhibit 

CYP2D6 in similar extent. Ketoconazole and fluconazole are inhibiting two different types of less important CYP2C 

enzymes as described above, but CYP2C9 is involved in the vortioxetine metabolism in higher extent than CYP2C8. 

Thus, inhibition of CYP2D6 and CYP3A4, especially when enhanced at CYP2C9, is expected to cause strong super 

additive effects of AUC increases ([34-36], Table 5). 

 

Table 5: Computed data for multiple drug drug interactions of galantamine, tamsulosin and vortioxetine 

Substrate Inhibitor Invovled enzymes (blocked enzymes bold) AUCcomp 

Galantamine Paroxetine and Ketoconazole CYP2D6, CYP3A4 and others, renal elimination 206% 

Tamsulosin Paroxetine and Ketoconazole CYP2D6, CYP3A4 1090% 

Vortioxetine Bupropion and Ketoconazole CYP2D6, CYP3A4/5, CYP2C9, CYP2C19, CYP2A6, 

CYP2C8 and CYP2B6 

459% 

Vortioxetine Paroxetine and Fluconazole CYP2D6, CYP3A4/5, CYP2C9, CYP2C19, CYP2A6, 

CYP2C8 and CYP2B6 

876% 

 

Statistical analysis 

A statistical analysis was performed for the 51 traditional pairwise drug drug interactions listed in Table 2; the 

number of Multiple Drug Drug Interactions (MDDI) was too limited to conduct a separate statistic analysis. 

Student t-Test 

Table 6: summary of Student t-test of AUCcomp,rel. 

Value Result 

Number records 51 

Average value AUCcomp,rel 

Variance AUCcomp,rel 

Standard deviation AUCcomp,rel 

99.45% 

0.17% 

4.1% 

Standard error AUCcomp,rel 

95% Confidence Interval AUCcomp,rel 

0.57% 

98.3%//100.6%1 
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Average value AUCstudy,rel 

Variance AUCstudy,rel 

Standard deviation AUCstudy,rel 

Standard error AUCstudy,rel 

95% Confidence Interval AUCstudy,rel 

100% 

0 

0 

0 

n.a.2 

1The 95% confidence interval for the two tailed one sample Student t-test with f = 50 = (51-1) and p = 0.05 is 

(98.3%; 100.6%) Average Value +- 2-fold Standard error (99.45% +- 0.57% * 2.01), and it falls within the set 

boundaries of 100% +- 24%; H0 cannot be rejected therefore and AUCcomp and AUCstudy are regarded to be equal. 

2data is constant

Discussion 

The target of this contribution was to show that a software and database search engine (MDDI Calculator) may be 

adjusted to assess and predict changes due to pharmacokinetic impacts in consistency with in vivo study data. Data 

comparison was done looking at traditional pairwise drug drug interactions and at multiple drug drug interactions, 

where one drug is affected through morefold interaction mechanisms and one or more other drugs at once. The focus 

was on the AUC changes of drugs, which predominantly are metabolized by the cytochrome P450 enzyme CYP2D6 

combined with strong CYP2D6 inhibitors or administered in patients with poor metabolizer status because these 

scenarios help to assess SMPR values of substrates and may especially cause enhanced effects and possibly toxicity. 

Data of concrete AUC changes, which is normally gained from phase I clinical trials or case reports, is rare and for 

multiple drug drug interactions is extremely rare. But people get older and polypharmacy with 5, 6, or more drugs is 

widely spread in industrial countries. Assuming only 500 active ingredients, a number well in accordance with the 

number of active principles in SDB [38], represent the bulk of medications, doctors may compile billions of 

different prescription combinations when prescribing polypharmacy. Nobody can make and finance research on all 

these combinations and their outcome. This shows the necessity of easily and quickly available information to assist 

doctors and pharmacists in the evaluation of kinetic drug interactions in clinical practice, especially in patients with 

polypharmacy and the risk of multi drug drug interactions. 

Favatella et al. [39] state in this context in an apixaban related publication “Not all possible combinations of 

therapies can be formally tested” and “even with the extensive controlled trial evidence available on the use of 

apixaban in patients who are receiving potentially interacting medications, data do not exist to inform on all 

decisions that clinicians and patients must make. Through extrapolation of the class effect, the available summarized 

data can be used to estimate the impact of unstudied DDIs based on their PK properties.” 

PBPK models have been developed in recent years, but very detailed and chemical properties of each drug must be 

known to drive these calculations and time requirements are extremely big as stated in a PBPK related study by 

Luecht et al. [40] which focused also on a comparison of the PBPK-PK-Sim® and the SCHOLZ DataBank MDDI 

method when researching the multiple DDI of venlafaxine – bupropion - itraconazole. Thus, PBPK calculations are 

very helpful in drug development and drug sciences, but they are not suitable for the use in clinical practice. 

Moreover, this comparison showed that PBPK and MDDI can be on a par and MDDI may perform even better, if 
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the PBPK settings are not on the point. The final conclusion was: "The MDDI Calculator demonstrated good 

consistency with in vivo drug exposure data in the multiple interaction scenario of VEN–BUP–ITRA. Overall, the 

MDDI Calculator is a helpful tool that can be used to predict the effect of several inhibitors of CYP enzymes on the 

exposure of a substrate. Both PBPK and MDDI Calculator provide, in their own way, valuable tools to predict the 

DDI’s extent." 

The use of relative AUC changes for the calculation of dose adjustments or the determination of contraindications is 

a well established method used in the official prescribing information as well. The relative AUC data in the 

prescribing information is commonly accepted as the judicial scaffolding for healthcare professionals in clinical 

practice. Healthcare professionals are using these data for years to perform dose adaptions and risk minimization in 

drug therapy. This fact shows that the comparison of relative AUC changes is commonly suitable, so that relative 

AUC data from the literature, in case also from prescribing information, can be used well for the calibration of the 

MDDI calculator. All dose adaptions have to be performed carefully by healthcare professionals with considering 

interindividual differences and patient monitoring. 

Apart from that, more study values, especially for multiple interactions, could help to verify and specify MDDI 

calculations. But due to the clinical risk of MDDI, systematic clinical trials are ethically critical, and can, as already 

mentioned, due to the immense financial implications, barely conducted in a satisfying manner. As long as no more 

data is available, actual MDDI calculations are one of the best approaches for clinicians to get kinetic information 

for evaluation of interactions and determination of dose adjustments in clinical practice at the point of care. 

The comparison of the computed values of the MDDI Calculator shows for 51 pairwise DDIs measured in vivo 

excellent consistency; given the size of the sample this consistency could be backed up by applying statistical tests 

such as applying t-test analysis statistics. This accordance could be achieved by assigning to both the substrates and 

the inhibitors specific unique values for SMPR and MEC using a %-scale of their propensity to be metabolized by or 

to block the CYP2D6 metabolizing enzyme. The rational of this method is backed up especially by the fact that high 

consistency of parameters SMPR and MEC and AUC comparison results could be shown when looking at 

metoprolol, desipramine, or tamsulosine, all substrates with different SMPR values, impacted by inhibitors of 

different inhibitor strengths causing different MEC values for inhibitors such as paroxetine or mirabegron. One 

discrepancy from that ruling was detected in the sample: venlafaxine which is usually classified as a moderate 

inhibitor of CYP2D6 showed in vivo a stronger impact on the haloperidol exposure than the strong CYP2D6 blocker 

paroxetine and therefore needed a computational ruling of exemption: as Cmax was increased by 88% and AUC by 

70% with no impact on the haloperidol half time [63] it was concluded that venlafaxine might have an impact 

reducing the First Pass effect and thereby elevate the AUC; accordingly a placeholder transporter/enzyme inhibited 

by venlafaxine was introduced and the question if haloperidol bioavailability depends on such transporter/enzyme 

including CYP2D6 activity should be explored by further research; another interpretation could be based on a 

competition of venlafaxine and haloperidol at gastrointestinal CYP3A4. These findings support the potential role of 

the MDDI Calculator to hint to niches where more research is needed. 

Another sort of discrepancy attracted attention as mirabegron which is usually classified as a moderate CYP2D6 

inhibitor behaved nearly as strong as paroxetine affecting metoprolol as well as tamsulosin. The conclusion out of 
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these observations might be that mirabegron is concerning CYP2D6 in vivo indeed more in the strong inhibitor 

ballpark or other effects not yet recognized are of relevance, for example impacts through other CYP enzymes or 

changes in bioavailability. The latter mechanism could also play a role in the haloperidol venlafaxine case as the half 

time of haloperidol is reported not to be affected in this interaction. 

Dose recommendations for aripiprazole in combination with strong CYP3A4 and CYP2D6 inhibitors come from 

PKPB Modeling. In this context, strong inhibitors are seen as one homogenous group of drugs, but in reality, the 

drugs, which are named ‘strong inhibitors’ are considerably different. The dose recommended for dose adjustment 

with contemporary use of strong CYP3A4 and strong CYP2D6 inhibitors is 75% lower than normal dose. This 

matches accurately the case of clarithromycin causing Kelrel = 25% but only practically the case of itraconazole with 

Kelrel = 17%. As the tablets may be quartered, both dose recommendations will lead to the same dose adjustment in 

clinical practice. Of course, all dose adjustments must be performed carefully with patient monitoring. However, as 

the potency to inhibit CYP3A4 of inhibitors such as ketoconazole or itraconazole or clarithromycin is actually rather 

different as the impact of the azols causes an AUC increase for the sensitive CYP3A4 substrate simvastatin to the 

18-fold [64] whereas the clarithromycin achieves only the 10-fold [65], it has to be assumed, that an in vivo study of 

the triple interaction “aripiprazole – paroxetine – itraconazole” would probably demonstrate a substantially higher 

AUC value for aripiprazole than the PBPK method indicates. When the CYP2D6 is blocked completely halving the 

metabolism of aripiprazole, then about 2/3 of the remaining metabolizing capacity is controlled by liver CYP3A4. If 

the blocking impact of clarithromycin on liver CYP3A4 yields another halving of the metabolism according to Kelrel 

= 25% and AUCrel = 400% whereby its effect is substantially weaker than the practically complete inhibition by 

itraconazole the latter should cause in total an AUCrel in the range of 600%. The MDDI Calculator computes 

actually a Kelrel = 17% and an AUCrel of 580% and is thereby in line with the Prescriber Information quoted which 

expects in CYP2D6 poor metabolizers a 3-fold AUC increase when a strong CYP3A4 inhibitor is administered. 

Insofar some ambiguity lies evidently in this Prescriber Information and the “true” value for the AUC increase in the 

case of complete CYP2D6 inhibition (by drug or genetically) plus strong or strongest CYP3A4 inhibition may be 

located in the range of the 4 – 6-fold. 

The 5 multiple DDIs caused by fluvoxamine deserve special attention. Clozapine [20,31], imipramine [14,31,42,43], 

pirfenidone [41], risperidone [14,31], and thioridazine [14,31,44] and their metabolisms are all dependent on 2 and 

more enyzmes including CYP2D6. Fluvoxamine is a strong inhibitor of CYP1A2 and CYP2C19, a moderate 

inhibitor of CYP2C9 and CYP3A4 and a weak inhibitor of CYP2D6 [20,37]. First of all, these 5 AUCcomp 

assessments made showed high consistency with deviations from in vivo study values of less than 10% although 

enzyme scenarios involved are quite different whereby similar to the haloperidol – venlafaxine case an additional 

impact of fluvoxamine on CYP2D6 controlled bioavailability of substrates was assumed. Furthermore it has been 

demonstrated that it does not matter if multiple enzyme/transporter inhibitions are caused by only one or multiple 

drugs and that multiple effects including minor contributions can result in clinically significant DDI and MDDI 

respectively as pointed out by Isoherranen et al., too [8]. Clinicians should be aware that inhibitors such as 

fluvoxamine or combinations of inhibitors affecting different enzymes substantially may cause “multi enzyme 

http://www.megajournalsofcasereports.com/


www.megajournalsofcasereports.com  Page 13 

failure” and consequently seriously elevated plasma levels of substrates, especially of those with narrow therapeutic 

index. 

The MDDI Calculator uses for its assessments of drug exposure changes a complex system of multidimensional 

Dettli type formulas [66-68] to compute Kelrel (instead of the individual elimination fraction Q) supplemented by a 

similar term for the assessment of Frel dependent on the extent FP is affected by transporter inhibitions. The precise 

functioning is a trade secret of SCHOLZ DataBank, Inc. [13]. The Dettli formula has proven itself for decades as 

reliable tool to compute drug dose adjustments needed due to renal failure and looks therefore, and because of the 

very similar logic of assessing Kelrel due to DDIs and MDDIs, to be a very appropriate platform to be applied in an 

expanded multidimensional format for the assessment of Kelrel able to reconcile kinetic drug interactions, patient 

individual data related to renal stage and also pharmacogenetic properties, as enzyme/transporter inhibition by drugs 

resulting in DDI or MDDI may mimick consequences in drug metabolism through pharmacogenetics such as PM or 

IM. A contribution by the author was recently published questioning if the Dettli formula needs an update moving 

away from linearity, for example in the case of metformin [45]. Due to the fact that non linearity in Michaelis-

Menten kinetics may occur occasionally when effective drug therapy can only be supported with drug 

concentrations in the range or higher than the Michaelis constant Km as known in the case of phenytoin [46] more 

research related to scenarios with floating Kel due to enzyme/transporter saturation is required. 

A last remark shall be dedicated to how the MDDI Calculator is related to AI. First of all automated and learning 

procedures help to accelerate furthermore the refining of drug properties and to improve the precision in respect to 

consistency with in vivo clinical data, dose dependent phenomena, and reconciliation with pharmacodynamic effects 

and adverse drug reactions. The target of minimizing the sum of all deviations of computed and measured data will 

be accomplished most effectively, too. The refinement process is already rather advanced and MDDI meaningful 

knowledge for about 700 active ingredients, substrates and inhibitors of relevance in this matter, and their drugs is 

now available and is steadily supplemented. Therefore the MDDI Calculator is ready to validate its predictive power 

in everyday clinical decision support in practice or care management when identifying and avoiding potentially 

dangerous drug combinations. However, this may require comprehensive time consuming and expensive case 

investigations including drug plasma level measurements or Drug Utilization Reviews (DUR) including the 

evaluation of adverse reactions, especially looking at patients on polypharmacy. Alternatively, to save time and 

money, Dr. Random’s Drug Interaction Clock of SDB has been developed in an AI oriented initiative which can be 

used to screen in a mass data analysis within days hundred thousands to millions prescriptions which are compiled 

in 5 to 12-drug samples either randomly, or targeted based on guideline recommended scenarios, or according to real 

patient data. Thus potentially dangerous scenarios where in particular MDDI caused elevated plasma levels and 

narrow therapeutic indices meet can be detected, compiled in the Polypharmacy Library of SCHOLZ DataBank, and 

commented by Health Care Professionals. This approach can be also helpful before or when introducing a new drug 

to gain more insights into potential hazards resulting from unknown combo therapies with the new drug. Last but not 

least, all kinetic interactions detected by the MDDI Calculator have to be reconciled with the adverse reactions 

caused possibly thereby. To reveal these dependencies including impacts by dosing, renal failure stages and 

pharmacogenetics more sophisticated software, AI software, is needed. The Adverse Drug Risk Control Panel (ADR 
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CP) of SCHOLZ DataBank with its Medication Optimizer has an answer to these challenges, too, and how to avoid 

increased risks of severe bleeding by apixaban or Acute Kidney Injury (AKI) by rosuvastatin was recently published 

demonstrating the capability to find and optimize also hidden and dose dependent drugs risks in drug interaction 

scenarios [69,70]. The importance to develop AI based drug decision support systems with Optimizer functions has 

to be emphasized, in particular, as the annual costs of drug related morbidity and mortality in 2016 resulting from 

nonoptimized medication therapy were estimated to amount to $528.4 billion in the U.S. according to a study 

published by Watanabe et al. [71]. 

 

Conclusion 

In total, based on 51 drug drug interactions evaluated, it can be concluded that the MDDI Calculator is able to 

compute changes of drug exposure in pairwise kinetic DDIs in a very reliable and excellent manner; it can be 

assumed that exemption ruling as needed in the haloperidol venlafaxine case would not be necessary if the 

background of that interaction would be completely known and understood. The MDDI Calculator in so far turns out 

also as an instrument providing effective support to detect fields of drug drug interactions which need further 

research and exploration. Furthermore, based on the property settings of ingredients according to the available 

pairwise in vivo data, the AUC changes for multiple pharmacokinetic drug drug interactions (MDDI) may be 

predicted, too. The predictive power of the MDDI calculator for multiple drug drug interactions is very well 

confirmed when looking at the few multiple drug drug interactions where in vivo data is available. Regarding in 

summary all 51 pairwise and 3 triple drug drug interactions researched, the AUC values, in all cases assessed with 

less than +- 10% deviation from in vivo data, surpassed substantially the set “excellency” target range of 100% +- 

24%. 
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