

Case Presentation

Compiled Date: October 16, 2025

A Case of Isolated Pancreatic Sarcoidosis with Unprecedented Imaging Findings

Yuki Kawaji¹, Reiko Ashida¹*, Ryuta Iwamoto², Tomokazu Ishihara¹, Yuto Sugihara¹, Takahiro Shishimoto¹, Hiromu Morishita¹, Akiya Nakahata¹, Takashi Tamura¹, Yasunobu Yamashita¹, Masahiro Itonaga¹ and Masayuki Kitano¹

¹Second Department of Internal Medicine, Wakayama Medical University, Japan

²Department of Human Pathology, Wakayama Medical University, Japan

*Corresponding author: Reiko Ashida, Second Department of Internal Medicine, Wakayama Medical University, 811-1 Kimiidera, Wakayama-City, Wakayama, 641-0012, Japan, Tel: 81734472300

Abstract

Pancreatic involvement in systemic sarcoidosis is infrequently observed, furthermore, isolated pancreatic sarcoidosis is extremely rare. A 47-year-old female presented epigastric and back pain. Contrast-enhanced CT showed diffuse swelling of the pancreas and a thin hypodense area surrounding the

pancreas. PET-CT showed FDG accumulation in the whole pancreas, but no obvious abnormal accumulation in other organs. Endoscopic ultrasonography (EUS) showed diffuse pancreatic enlargement, with prominent swelling of the pancreatic head. Hyperechoic foci, strands and

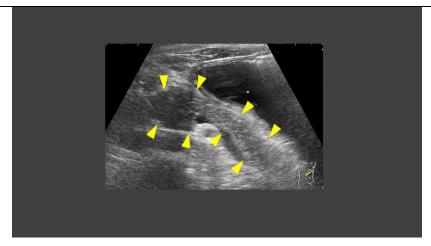
parenchyma. Contrast-enhanced harmonic **EUS** revealed homogeneous enhancement the pancreatic parenchyma, which persisted continuously. EUS-guided fine needle biopsy was performed and the pathological findings showed noncaseating granulomas. The patient was diagnosed with isolated pancreatic sarcoidosis. The symptoms spontaneously disappeared, therefore steroid therapy was not initiated. Two months after the onset, CT scan showed marked improvement in pancreatic enlargement. In the literatures, pancreatic sarcoidosis predominantly demonstrates hypovascular mass lesions and enlarged lymph nodes on imaging. In contrast, all imaging studies in our case demonstrated diffuse enlargement of the pancreas, resembling autoimmune pancreatitis, with no identifiable pancreatic mass lesion. To the best of our knowledge, such findings have not been reported previously.

lobularity were observed in

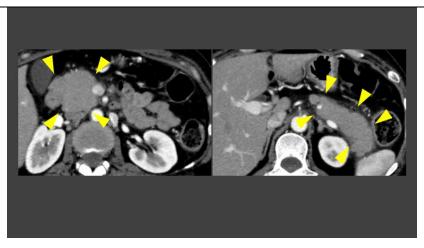
the

pancreatic

Keywords: Pancreatic sarcoidosis; Contrastenhanced harmonic endoscopic ultrasonography; Endoscopic ultrasound guided fine needle aspiration/biopsy; Noncaseating granulomas; Autoimmune pancreatitis


Introduction

Sarcoidosis is a chronic systemic disease of unknown characterized by the etiology, presence noncaseating granulomas in affected tissues [1,2]. It primarily affects young and middle-aged adults and can involve multiple organ systems, most commonly the hilar lymph nodes (typically bilaterally), lungs, heart, liver, spleen, eyes, kidneys, lymph nodes, salivary glands, nervous system, muscles, and bones [3,4]. However, involvement of other organs is rare. Pancreatic involvement in sarcoidosis is particularly uncommon and is often identified postmortem. Autopsy studies have reported pancreatic sarcoidosis in 1-5% of patients with systemic sarcoidosis [1,3,5while isolated pancreatic sarcoidosis is exceedingly rare. Due to its infrequent occurrence, radiological characteristics of the pancreatic sarcoidosis remain poorly defined. To date, only a limited number of reports have described its imaging using Computed Tomography (CT), features Magnetic Resonance Imaging (MRI) [9-11], or Endoscopic Ultrasonography (EUS) [7]. Herein, we report a case of isolated pancreatic sarcoidosis with unprecedented imaging findings.


Case Presentation

A 47-year-old woman visited her local doctor because of the onset of epigastric and back pain. Blood tests showed elevated pancreatic enzymes, therefore acute pancreatitis was suspected. Then, the patient was referred to our hospital. Her medical history included sialolithiasis. She smoked a pack of cigarettes and drank occasionally. Her abdomen was flat and soft, without tenderness. Laboratory examinations on admission showed WBC $6430/\mu L$, AMY 269~U/L, lipase 1182U/L, CRP 0.05~mg/dL, IgG4 81~mg/dL, ACE 13.9~U/L, sIL-2R 356~U/mL

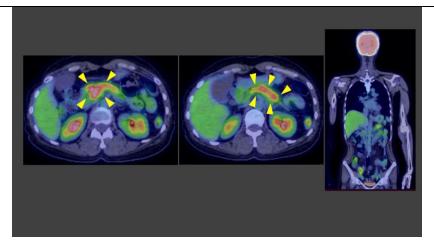

(Table 1). Abdominal ultrasonography revealed diffuse enlargement of pancreas with coarse parenchyma (Figure 1). Abdominal Contrast-Enhanced CT (CE-CT) showed diffuse swelling of the pancreas and a thin hypodense area surrounding the pancreas, with a capsule-like structure (Figure 2). No lymphadenopathy was observed in other lesions including the hilar lymph nodes. Positron emission tomography CT showed fluorodeoxyglucose accumulation with SUVmax=8.92 in the whole pancreas, but no obvious abnormal accumulation in other organs (Figure 3).

Figure 1: Abdominal ultrasonography revealed diffuse enlargement of pancreas with coarse parenchyma (arrowheads).

Figure 2: Abdominal contrast-enhanced computed tomography in pancreatic phase showed diffuse swelling of the pancreas (arrowheads) and a thin hypodense area surrounding the pancreas, with a capsule-like structure.

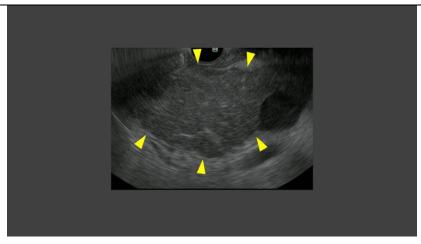


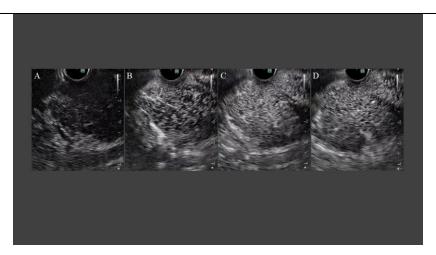
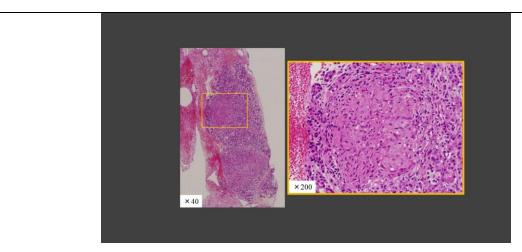
Figure 3: Positron emission tomography computed tomography showed fluorodeoxyglucose accumulation with SUVmax=8.92 in the whole pancreas (arrowheads), whereas no obvious abnormal accumulation in other organs including the hilar lymph nodes.

EUS showed diffuse pancreatic enlargement, with prominent swelling of the pancreatic head (Figure 4). Hyperechoic foci and strands, as well as lobularity, were observed in the pancreatic parenchyma. Contrast-enhanced harmonic EUS (CH-EUS) using an ultrasound contrast agent (Sonazoid®; Daiichi-Sankyo, Tokyo, Japan) revealed homogeneous enhancement of the pancreatic parenchyma, which

persisted continuously (**Figure 5**). EUS-guided fine needle biopsy (EUS-FNB) using a disposable 19-gauge needle (SharkCore, Covidien, Japan Inc.) was performed (**Figure 6**). The pathological findings showed that multiple nodular granulomas composed of epithelioid cells were diffusely distributed throughout the specimen (**Figure 7**). Immunostaining revealed CD68 positivity, clearly highlighting the

epithelioid granulomas (**Figure 8**). Additionally, negative. IgG4, Ziehl-Neelsen, and D-PAS staining were

Figure 4: Endoscopic ultrasonography showed diffuse pancreatic enlargement, with prominent swelling of the pancreatic head (arrowheads). Hyperechoic foci and strands, as well as lobularity, were observed in the pancreatic parenchyma.

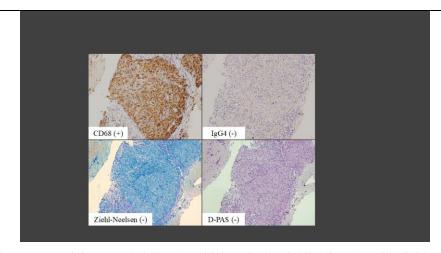
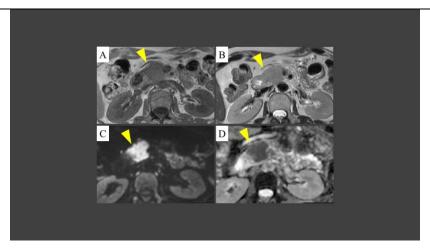
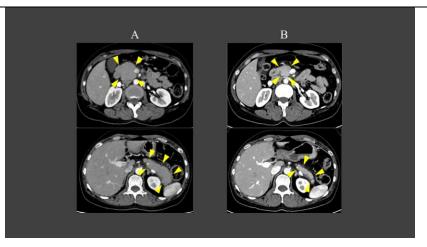

Figure 5: A) Pre-contrast, B) 20 seconds after contrast injection, C) 40 seconds after contrast injection, D) 60 seconds after contrast injection. Contrast-enhanced harmonic endoscopic ultrasonography using an ultrasound contrast agent (Sonazoid®; Daiichi-Sankyo, Tokyo, Japan) demonstrated homogeneous enhancement of the pancreatic parenchyma from approximately 20 seconds after contrast injection, which persisted beyond 60 seconds after injection.

Figure 6: Endoscopic ultrasound guided fine needle biopsy was performed, and the pancreatic head was punctured from the stomach using a disposable 19-gauge needle (SharkCore, Covidien, Japan Inc.).


Figure 7: Histopathological findings. Hematoxylin and Eosin staining was performed. Multiple nodular granulomas composed of epithelioid cells were diffusely distributed throughout the specimen.


Figure 8: Immunostaining revealed CD68 positivity, clearly highlighting the epithelioid granulomas. Additionally, IgG4, Ziehl-Neelsen, and D-PAS staining were negative.

Based on these findings, we diagnosed the patient with pancreatic sarcoidosis. The electrocardiogram and echocardiography revealed no abnormality and no eye lesions were identified. Therefore, we diagnosed the case as isolated pancreatic sarcoidosis. Steroid therapy was considered due to the symptoms of epigastric and back pain, however, the MRI immediately prior to treatment showed that the pancreatic swelling was improving (Figure 9).

Therefore, the patient was administered only an oral proteolytic enzyme inhibitor and a digestive enzyme supplement pancrelipase. Two months after the onset of symptoms, epigastric and back pain disappeared, and blood tests showed that pancreatic enzymes had normalized. CT scan also showed marked improvement in pancreatic enlargement (Figure 10). The patient has been followed up since then, and no relapse has been observed after 4 years.

Figure 9: A) T1 weighted image, B) T2 weighted image, C) Diffusion-weighted image (b=1000), D) Apparent diffusion coefficient map. Magnetic resonance imaging showed the pancreatic swelling was improving (arrowheads).

Figure 10: A) contrast-enhanced computed tomography (CE-CT) at the initial visit, B) CE-CT two months later. CT scan showed marked improvement in pancreatic enlargement (arrowheads).

Discussion

Pancreatic involvement in systemic sarcoidosis is infrequently Furthermore, observed. isolated pancreatic sarcoidosis is extremely rare; to date, approximately only 40 cases have been reported in the literature. In reported 25 cases with pancreatic sarcoidosis, patients presented with abdominal pain (66%), weight loss (45%), obstructive jaundice (29%) and nausea/emesis (20%), pruritus (12%), fever (8%), diarrhea (4%), abdominal distention (4%) and ascites (4%), while 16% of patients were asymptomatic [12]. Furthermore, 35% had elevated amylase, 62% had elevated Angiotensin-converting enzyme and 26% had bilateral hilar lymphadenopathy [12]. Generally, corticosteroids are the treatment of choice for sarcoidosis. While the overall prognosis varies, mild pancreatic involvement usually has a good outcome,

with a high rate of spontaneous remission [1,6,13]. Corticosteroids may help relieve abdominal pain and lower elevated serum amylase and lipase levels [14]. In previous reports, 18 patients with pancreatic sarcoidosis were followed up. Six improved without treatment. whereas. 10 improved with and corticosteroids [1,12]. In the present case, although corticosteroid therapy was considered due to epigastric and back pain resembling symptoms of pancreatitis, imaging findings acute showed improvement in pancreatic enlargement. Therefore, the patient was treated only with an oral proteolytic enzyme inhibitor and the digestive enzyme supplement pancrelipase, after which the symptoms resolved.

In the literatures, pancreatic sarcoidosis demonstrates

solid mass lesions located in the head of the pancreas, or multiple nodule lesion in the whole pancreas [15]. Therefore, it may mimic pancreatic malignancies. Varieties of differential diagnoses are considered for pancreatic mass, for instance, pancreatic adenocarcinoma, primary pancreatic lymphoma, pancreatic neuroendocrine neoplasm, Autoimmune Pancreatitis (AIP), metastasis other primary sites, and rare diseases such as pancreatic tuberculosis or pancreatic sarcoidosis. So far, there is no specific diagnostic imaging for pancreatic sarcoidosis. Although CE-CT is a useful modality for detecting pancreatic masses, it is not specific for diagnosing pancreatic sarcoidosis. Pancreatic sarcoidosis lesions detected on CE-CT showed a lower density than the pancreatic parenchyma. Essentially, an ill-defined pancreatic head mass, narrowing and dilatation of the common bile duct with or without pancreatic duct dilatation, and enlarged lymph nodes are the most common CT findings reported in the literatures [10,16-21]. MRI findings in pancreatic sarcoidosis have been described in the literature. MRI findings of a patient with pancreatic sarcoidosis revealed pancreatic masses with slight hyperintensity on T2weighted images and delayed progressive enhancement after administration of gadolinium,

becoming isointense to the rest of the pancreas on the portal venous and delayed venous phases [10,22]. EUS findings in pancreatic sarcoidosis are limited so far. Previous reports described that pancreatic sarcoidosis was hypoechoic mass lesion on EUS, which was similar to the appearance of pancreatic cancer [23-25]. CH-EUS findings in pancreatic sarcoidosis are crucially limited. It is reported that CH-EUS visualized isoenhancement or hypoenhancement relative to the surrounding pancreatic parenchyma [23,25]. Until recently, the differentiation of pancreatic sarcoidosis pancreatic cancer was difficult in most cases, therefore, with diagnostic or therapeutic intent, surgical intervention was needed. However, since 2016, the number of reports describing the diagnosis of pancreatic sarcoidosis by EUS-guided Fine Needle Aspiration/Biopsy (EUS-FNA/B) has increased. EUS-FNA/B is a safe and minimally invasive procedure with high diagnostic performance [26]. In our case, CE-CT showed diffuse swelling of the pancreas and a thin hypodense area surrounding the pancreas, similar to a capsule-like rim in AIP. Other imaging tests similarly showed diffuse enlargement of the pancreas, resembling AIP. No pancreatic mass lesion was found. These findings have never been

reported in the pancreatic sarcoidosis. Therefore, these findings are highly characteristic of our case. Pathological examination via **EUS-FNB** demonstrated multiple epithelioid granulomas, which allowed for the diagnosis of pancreatic sarcoidosis. IgG4 immunostaining was negative. Since serum IgG4 negative and immunohistochemical staining of the pathological specimen was also negative for IgG4, type 1 AIP was ruled out. Furthermore, as granulocytic epithelial lesion was not observed in the histological examination, type 2 AIP was excluded.

In the present case, the reason why diffuse pancreatic enlargement was observed remains unclear. However, both sarcoidosis and AIP are systemic inflammatory diseases, therefore, the occurrence of pancreatic sarcoidosis in such imaging findings is considered possible. While pancreatic sarcoidosis is extremely rare, it should be included in the differential diagnosis if diffuse pancreatic enlargement is detected.

Table 1: Laboratory Examinations.

	1	T	ı		1
<peripheral blood="" count=""></peripheral>		<blood chemistry=""></blood>		Na	139 mEq/L
WBC	6800 /μL	TP	7.1 g/dL	K	4.6 mEq/L
RBC	$457\times10^4/\mu L$	ALB	4.2 g/dL	Cl	109 mEq/L
Hb	9.2 g/dL	AST	15 IU/L	CRP	0.02 mg/dL
Hct	30.10%	ALT	13 IU/L	CEA	11.2 ng/mL
Plt	$47.4 \times 10^{4/\mu L}$	ALP	54 IU/L	CA19-9	15.9 U/mL
		LD	175 IU/L	Span-1	13.8 U/mL
<coagulation></coagulation>		γ-GTP	21 IU/L	Erastase1	3858 ng/dL
PT %	89.50%	AMY	221 IU/L		
PT-INR	1.07	Lipase	980 IU/L	<immunology></immunology>	
		Cre	0.65 mg/dL	IgG	1175 mg/dL
		BUN	7.7 mg/dL	IgG4	81 mg/dL
		Glu	99 mg/dL	ANA	<40 titer
		HbA1c	6.10%	sIL-2R	356 U/mL
		T-BIL	0.4 mg/dL	ACE	13.9 U/L

WBC: White blood cell, RBC: Red blood cell, Hb: Hemoglobin, Hct: Hematocrit, Plt: Platelet, PT: Prothrombin time, PT-INR: Prothrombin time-international normalized ratio, TP: Total protein, ALB: Albumin, AST:

Aspartate aminotransferase, ALT: Alanine amino-transferase, ALP: Alkaline phosphatase, LD: Lactate dehydrogenase, γ-GTP: γ-Glutamyl transpeptidase, AMY: Amylase, Cre: Creatinine, BUN: Blood urea nitrogen, Glu: Blood glucose, T-Bil: Total bilirubin, CRP: C-reactive protein, CEA: Carcinoembryonic antigen, CA19-9: Carbohydrate antigen 19-9, Span-1: S-pancreas-1antigen, IgG: Immunoglobulin G, ANA: Antinuclear antibody, sIL-2R: Soluble interleukin-2 receptor, ACE: Angiotensin-converting enzyme

References

- Harder H, Büchler MW, Fröhlich B, et al.
 Extrapulmonary sarcoidosis of liver and pancreas: a case report and review of literature. World J Gastroenterol.
 2007;13(17):2504-9.
- Mony S, Patil PD, English R, Das A, Culver
 DA, Panchabhai TS. A rare presentation of sarcoidosis as a pancreatic head mass. Case
 Rep Pulmonol. 2017:2017:7037162.
- Iwai K, Tachibana T, Hosoda Y, Matsui Y.
 Sarcoidosis autopsies in Japan. Sarcoidosis.
 1988;5(1):60-5.
- 4. Schauer RJ, Völker U, Kreuzmayr A. An

 unorthodox pancreatic lesion in a young

 man presenting with jaundice.

 Gastroenterology. 2011;141:1563.
- Rao DA, Dellaripa PF. Extrapulmonary
 manifestations of sarcoidosis. Rheum Dis

 Clin North Am. 2013;39(2):277-97.

- Shukla M, Hassan MF, Toor V, Kaur J,
 Solomon C, Cohen H. Symptomatic
 pancreatic sarcoidosis. Case report and
 review of literature. JOP. 2007;8(6):770-4.
- 7. Romboli E, Campana D, Piscitelli L, et al.

 Pancreatic involvement in systemic

 sarcoidosis. A case report. Dig Liver Dis.

 2004;36(3):222-7.
- 8. McCormick PA, O'Donnell M, McGeeney

 K, FitzGerald O, McCormick DA,

 FitzGerald MX. Sarcoidosis and the

 pancreas. Ir J Med Sci. 1988;157(6):181-3.
- Bonhomme A, Dhadamus A, De Bie P, Van
 Hoe L, Baert AL. Pancreatic involvement in
 systemic sarcoidosis: CT findings. J Belge
 Radiol. 1997;80(3):116-7.
- Baroni RH, Pedrosa I, Tavernaraki E,
 Goldsmith J, Rofsky NM. Pancreatic
 sarcoidosis: MRI features. J Magn Reson
 Imaging. 2004;20(5):889-93.

- 11. Low G, Panu A, Millo N, Leen E.

 Multimodality imaging of neoplastic and
 non neoplastic solid lesions of the pancreas.

 Radiographics. 2011;31(4):993-1015.
- Caceres M, Sabbaghian MS, Braud R, Wilks
 S, Boyle M. Pancreatic sarcoidosis: unusual
 presentation resembling a periampullary
 malignancy. Curr Surg. 2006;63(3):179-85.
- Garcia C, Kumar V, Sharma O. Pancreatic sarcoidosis. Sarcoidosis Vasc Diffuse Lung Dis. 1996;13:28-32.
- 14. Eklund A, Bois R. Approaches to the treatment of some of the troublesome manifestations of sarcoidosis. J Intern Med. 2014;275:335-349.
- Curran JF. Boeck's sarcoid of the pancreas.
 Surgery. 1950;28:574-578.
- 16. Bacal D, Hoshal Jr VL, Schaldenbrand JD, Lampman RM. Sarcoidosis of the pancreas: case report and review of the literature. Am Surg. 2000;66:675-8.
- 17. Ohana G, Melki Y, Rosenblat Y, Kravarusic

 D, Weil R. Pancreatic sarcoidosis mimicking

 a malignant tumour. Eur J Surg.

 2002;168:513-5.
- 18. Mayne AIW, Ahmad J, Loughrey M, Taylor

- MA. Sarcoidosis of the pancreas mimicking adenocarcinoma. BMJ Case Rep. 2013;bcr2013009118.
- Soyer P, Gottlieb L, Bluemke DA, Fishman
 E. Sarcoidosis of the pancreas mimicking
 pancreatic cancer: CT features. Eur J Radiol.
 1994;19:32-3.
- 20. Erich Hübner NPA. CT in the differentiation of pancreatic neoplasms-progress report. Dig Dis. 2004;22:6-17.
- 21. Salavati A, Promteangtrong C, Torigian D,

 Alavi A. The evolving role of PET/CT and

 PET/MRI in the management of sarcoidosis.

 Society of Nuclear Medicine Annual

 Meeting Abstracts; Soc Nuclear Med.

 2014;55(1):1282.
- 22. Gezer NS, Başara I, Altay C, Harman M, Rocher L, Karabulut N, SeçilM. Abdominal sarcoidosis: cross-sectional imaging findings. Diagn Interv Radiol. 2015;21:111-7.
- 23. Azemoto N, Kumagi T, Koizumi M, et al.

 Diagnostic challenge in pancreatic

 sarcoidosis using endoscopic

 ultrasonography. Intern Med. 2018;57:231
 235.

- 24. Matsuura S, Mochizuka Y, Oishi K, et al.

 Sarcoidosis with pancreatic mass,
 endobronchial nodules, and miliary opacities
 in the lung. Intern Med. 2017;56:3083-3087.
- 25. <u>Takeda S, Kawaratani H, Takami M, et al.</u>
 Isolated Pancreatic Sarcoidosis Diagnosed
- by Endoscopic Ultrasound-guided Fineneedle Aspiration. Intern Med. 2020;59:1407-1412.
- 26. <u>Yamashita Y, Kitano M. Endoscopic</u> <u>ultrasonography for pancreatic solid lesions.</u>
 J Med Ultrason (2001). 2020;47:377-387.

Citation of this Article

Kawaji Y, Ashida R, Iwamoto R, Ishihara T, Sugihara Y, Shishimoto T, Morishita H, Nakahata A, Tamura T, Yamashita Y, Itonaga M and Kitano M. A Case of Isolated Pancreatic Sarcoidosis with Unprecedented Imaging Findings. Mega J Case Rep. 2025;8(10):2001-2013.

Copyright

[©]2025 Ashida R. This is an Open Access Journal Article Published under <u>Attribution-Share Alike CC BY-SA</u>: Creative Commons Attribution-Share Alike 4.0 International License. With this license, readers can share, distribute, and download, even commercially, as long as the original source is properly cited.