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Abstract 

This study reports experimental validation of a 

high-sensitivity diamond-tipped thermal product 

sensor for non-invasive skin cancer detection, 

complementing the design and modelling presented 

in Part A of this paper. Calibration with air and 

water confirmed baseline sensitivity improvements 

of an order of magnitude compared with previous 

thin-film based thermal product sensors. Accuracy 

of the measurement system was established through 

glycerol validation, while repeatability studies 

across multiple sessions yielded coefficients of 

variation <1%. Measurement uncertainty analysis 

showed combined uncertainties of 0.16-0.32°C in 

the temperature measurement and 0.26 in the 

thermal product evaluation. This comfortably 

exceeds diagnostic detection thresholds. Predictive 

modelling with interval PLS demonstrated excellent 

generalisation and linearity (RMSECV = 17.86 

J/(m2 K s0.5); R² = 0.999), further validated against 

blind samples. Preliminary porcine testing 

confirmed clear differentiation of skin, fat, muscle, 

and fascia. Together, these results validate the 

robustness and demonstrate clinical potential of 

diamond-tipped thermal sensors as a development 

for real-time, non-invasive cancer diagnostics. 

Keywords: Thermal product sensor; Diamond 

substrate; Skin cancer detection; Non-invasive 

diagnostics; Thermal properties; Biomedical 
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Introduction 

Accurate, early detection of skin cancer is critical 

for patient outcomes and healthcare efficiency. 

Current approaches depend on visual inspection and 

invasive biopsy, with high costs and unnecessary 

excisions [1-3]. Thermal product sensing has 

emerged as a promising technique for tissue 

characterisation, with thin-film sensors previously 

demonstrating proof-of-concept discrimination of 

malignant/benign lesions, being extensively 

thermally modelled, and showing potential for 
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integration with machine learning [4-6]. However, 

limitations including low sensitivity, fragile design, 

and electrical safety concerns limit their clinical 

approval. Part A of this study presented a novel 

diamond-tipped sensor design that leverages the 

exceptional thermal properties of single crystal 

diamond to overcome all these limitations. This 

paper (Part B) focuses on the experimental 

validation of the new sensor concept. Calibration 

with reference materials was performed to establish 

sensitivity, glycerol validation confirms 

quantitative accuracy, repeatability and uncertainty 

analysis demonstrate robustness and clinical 

suitability. A predictive statistical model is 

developed and validated against blind samples, and 

preliminary porcine testing illustrates biological 

tissue discrimination. These results demonstrate the 

feasibility of the diamond sensor as a robust, 

routine clinical diagnostic tool. 

 

Experimental Validation 

Material Testing Protocol 

Performance validation of the diamond-tipped 

thermal sensor was conducted with a series of 

controlled bench top experiments. The probe 

consisted of a 2 mm diameter, 1 mm thick single-

crystal diamond substrate bonded to a polyimide 

pedestal and housed within a stainless steel probe 

body (Figure 1). Heating was applied via a fine-

wire element placed at the rear of the diamond, and 

temperature was measured using a fast response K-

type thermocouple which was brazed to the rear of 

the diamond, with signal conditioning provided by 

dedicated electronics. 

 

  

Figure 1: Sensor schematic (left) and manufactured probe (right). 

 

Testing was conducted on air, purified water, and 

glycerol; chosen to span a wide range of thermal 

product values (Table 1). This range covers 

differences comparable in magnitude to those 

reported between normal and cancerous human skin 

(ΔTP ≈ 380 J/(m2 K s0.5)), thereby providing a 

clinically relevant benchmark. For each material, 

measurements were performed under controlled 

heating and measurement conditions to ensure 

comparability.
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Table 1: Tested materials for validation. 

Material Density 

[kg/m³] 

Specific Heat 

[J/kg·K] 

Thermal Conductivity 

[W/m·K] 

Thermal Product 

[J/(m2 K s0.5)] 

Air 1.225 1006 0.026 6 

Glycerol 1250 2380 0.286 922 

Purified Water 997.049 4181.5 0.607 1591 

 

Results 

Sensor Calibration with Air and Water 

Experimental calibration is presented in Table 2, 

where air and purified water is used to demonstrate 

the enhanced sensitivity compared to previous thin 

film probes. Results show an improvement of 12.6x 

and 5.2x for the sensors tested. The difference in 

manufacture between the two sensors lies in the 

thermocouple bonding method to the rear of the 

single crystal diamond disc. 

 

Table 2: Diamond Sensor Performance with Air and Water Reference Materials 

Sensor name 

Power 

run at 

[W] 

Max. Measured 

ΔT Air-Water 

[°C] 

Time when 

Max. 

Measured 

ΔT Air-

Water [s] 

TP Difference 

Air (6) - Water 

(1582) 

(ΔTP = 1576 

[J/(m2 K s0.5)]) 

Sensor 

Sensitivity 

TP/ΔT 

[°C/TP] 

Sensitivity 

Improvement 

compared to 

thin film 

gauge sensor 

 

G-1-Dev-001 

(Brazed 

Thermocouple) 

2.9 20.63 4.63 1576 0.013090 

 

x12.62 

G-1-Dev-002 

(Adhesive Bonded 

Thermocouple) 

9.38 8.49 1.39 1576 0.005384 

 

x5.20 

 

Figure 2 shows the temporal temperature response 

for both air and water measurements using sensor 

G-1-Dev-001 run at 2.9W for 1 second. The 

maximum temperature difference of 20.63°C was 

achieved at 4.63 seconds, corresponding to a sensor 

sensitivity of 0.013090°C/TP. 
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Figure 2: Maximum air-water temperature difference of 20.63°C. This represents a sensor sensitivity of 

0.013090 °C/TP 

 

The diamond sensor power requirement has been 

reduced and demonstrated good thermal coupling 

between the substrate and test material. The 

improved coupling provided by the 2 mm single 

crystal diamond disc with the test material enables 

the order of magnitude greater sensitivity. 

Sensor validation using Glycerol 

Figure 3 depicts the temperature measurement 

results of air, water and glycerol, with a heat pulse 

input of 0.25 seconds at 9.38W using the sensor G-

1-Dev-002.
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Figure 3: Temperature response of sensor G-1-Dev-002 to air, water, and glycerol. 

 

To determine the thermal product of glycerol, linear 

interpolation was performed using air and water 

due to their precise thermal product characterisation 

in the literature. The evaluated thermal product 

value of glycerol was 912.7 J/(m2 K s0.5) with an 

uncertainty of ±0.5%, while the open literature 

reports a value of 922 J/(m2 K s0.5) with an 

uncertainty of ±2.5%. This method demonstrates 

the exceptional accuracy achieved, validating the 

sensors quantitative capability. 

All measurements were corrected for ambient 

temperature changes to a common baseline of 20°C, 

with a 0.25-second heat pulse at 9.38W power 

input, ensuring temperatures remained below the 

42°C dermatological safety threshold. The 

demonstrated accuracy for glycerol is particularly 

relevant as this value falls within the range given 

for human skin legions by DeGiovanni [6]. 

 

Repeatability and Statistical Analysis 

To assess measurement precision, repeatability 

analysis was conducted using 10 independent 

measurements of each reference material using the 

sensor G-1-Dev-002. 

Figure 4 presents the temperature measurement 

results of purified water. The temperature 

differences between the 10 different measurements 

lie between approximately ±0.05°C during the 

temperature decay once the peak is passed. The 

peak shows a slightly larger difference due to the 

data digitisation bandwidth not always capturing 

the peak location accurately. 
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Figure 4: Temperature measurement results of purified water (left), with a magnified window at 4.12-4.22 

seconds showing a temperature range of ~0.1°C (right). 

 

Multiple measurement sessions demonstrated 

consistent precision, with water measurements 

achieving Coefficient of Variation (CV) values 

ranging from 0.25% to 0.85% across different 

sessions, glycerol showing CV of 0.35%, and air 

demonstrating CV of 0.46%. The 95% confidence 

intervals for the mean responses ranged from 

±0.073°C to ±0.190°C across all materials and 

sessions, confirming high measurement precision. 

A summary of the CV and confidence limits is 

given in Table 3 below for 10 repeats of each 

material.

 

Table 3: Repeatability Analysis Summary (n=10 each material) 

Material CV [%] 95% CI [°C] 

Air 0.46 ±0.123 

Glycerol 0.35 ±0.089 

Water (Session 1) 0.85 ±0.190 

Water (Session 2) 0.25 ±0.073 

CV < 2% indicates excellent repeatability for clinical instruments. 

 

Key Observations 

Material Discrimination: The sensor successfully 

discriminated between all three materials with 

statistically significant differences across multiple 

measurement sessions. 

Exceptional Precision: All materials achieved CV 

< 1% for maximum temperature, with the best 

water session reaching CV = 0.25%, representing 

outstanding precision that significantly exceeds 

clinical instrument requirements (typically CV < 

5%). 

Session Consistency: Multiple measurement 

sessions demonstrated reproducible performance, 

with water measurements showing CV range of 

0.25-0.85%, confirming robust sensor operation 

across different experimental conditions. 

 

Measurement Uncertainty and Error Analysis 

An uncertainty analysis was performed to assess the 

sensor's clinical suitability by identifying and 

quantifying all significant error sources. The total 

measurement uncertainty was calculated using the 

root-sum-of-squares method, combining random 

(Type A) and systematic (Type B) uncertainty 

components. The analysis incorporated data from 

multiple measurement sessions to provide 
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conservative uncertainty estimates. The dominant 

uncertainty source was measurement repeatability, 

with session-dependent contributions ranging from 

±0.12°C to ±0.31°C for water measurements. 

Additional systematic uncertainties included 

thermocouple calibration (±0.05°C), thermal 

contact variations (±0.05°C), environmental effects 

(±0.03°C), and baseline correction (±0.02°C). 

Digital quantisation and electrical noise contributed 

negligibly (±0.014°C combined). 

Using the most conservative repeatability data, the 

total combined measurement uncertainties were 

±0.32°C for water, ±0.22°C for air, and ±0.16°C for 

glycerol, corresponding to relative uncertainties of 

0.89%, 0.50%, and 0.39% respectively. However, 

optimal measurement conditions achieved 

uncertainties as low as ±0.14°C for water, 

demonstrating the sensor precision potential. Table 

4 summarises the measurement uncertainty in 

temperature measurement translated to thermal 

product.

 

Table 4: Measurement Uncertainty Budget. 

Error Source Air Water Glycerol Type 

Repeatability [°C] ±0.200 ±0.310* ±0.140 Random 

Calibration [°C] ±0.050 ±0.050 ±0.050 Systematic 

Environmental [°C] ±0.030 ±0.030 ±0.030 Systematic 

Thermal Contact [°C] ±0.050 ±0.050 ±0.050 Systematic 

RSS Total [°C] ±0.216 ±0.320 ±0.162 Combined 

TP Uncertainty [J/(m2 K s0.5)] 6±0.001 1591±0.23 922±0.26 Combined 

*Conservative estimate; optimal conditions achieve ±0.118°C 

 

Under conservative conditions, where the 

uncertainty for water is ±0.23TP units, and air is 

±0.01 TP units the maximum predicted uncertainty 

of an unknown sample will be ±0.231 TP units. 

This correlates reasonably well with the measured 

measurement uncertainty given in Figure 4 (right) 

of ±0.05°C. 

In clinical and analytical contexts, the sensor meets 

stringent clinical requirements with temperature 

uncertainties well below 0.32°C thresholds and 

relative uncertainties <0.26 TP units. A minimum 

SNR of around 3:1 is typically considered sufficient 

to ensure reliable detection, while an SNR of 10:1 

is generally required for precise quantification, as 

outlined in analytical method validation guidelines 

(e.g., ICH Q2(R2)) [7]. For the present application, 

which focuses on distinguishing between cancerous 

and normal skin rather than precise quantification, 

the 3:1 criterion is most relevant. The sensor SNR 

is ~54:1 at 27°C thus exceeding this threshold, with 

optimal conditions even approaching/surpassing the 

stricter quantification criterion, providing strong 

confidence for clinical skin cancer detection. 
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Predictive Modelling and Blind Sample 

Validation 

To extend beyond direct calibration and uncertainty 

analysis, a predictive statistical model was 

developed to generalise sensor responses to 

unknown samples. This section describes the data 

pre-processing, interval partial least squares (iPLS) 

modelling, and blind sample validation used to 

evaluate the robustness and predictive capability of 

the sensor. Temperature profiles were imported into 

MATLAB R2022a (Mathworks) for initial 

inspection and clean-up, with sampling 

discontinuities addressed by mean-averaging the 

adjacent variables. Normalisation of the data was 

also performed by mean-averaging the initial 10 

“pre-pulse” variables and subtracting this value 

from all variables, producing a “delta temperature” 

measurement where initial temperature offset as a 

result of environmental factors was eliminated to 

minimise baseline variation. Any raw or averaged 

data figures and performance metrics such as 

standard deviations were also produced at this 

stage. 

The processed data was exported from MATLAB 

and imported to Solo 9.1 (Eigenvector Research 

Inc.) for the creation of the primary statistical 

model. An interval partial least squares (iPLS) 

model was initially created: “X and Y” matrix data 

were separated into their respective blocks in the 

model workflow before data pre-processing 

treatments were applied. A variable selection 

process via forward partial least squares was 

initiated, with a window width of 1 sample and the 

window number set to “auto”. This variable 

selection process identified the time point t = 0.574-

0.575 seconds as producing the lowest Relative 

Mean Squared Error of Cross-Validation 

(RMSECV) which can be seen in Figure 5. 

 

 

Figure 5: The variable time point identified via the forward PLS algorithm as giving rise to the greatest variation 

in the tested samples. 

 

Use of such a narrow band compared to the overall 

variable width indicates (before the model is even 

constructed) that the X/Y relationship is likely to be 

simple/linear with low dimensionality. A cross-

validation scheme of “Venetian blind” was selected 

with n = 6. Model statistics such as RMSECV 

(Root Mean Squared Error of Cross-Validation) and 

R2 (coefficient of determination) were calculated. 

Solo model optimiser was utilised at this stage to 

perform a parametric study – sweeping all 

reasonable permutations – to obtain the model with 

the lowest RMSECV. This included altering the 

fundamental model type between Principal 

Component Regression (PCR), PLS, and Support 

Vector Regression (SVR); and the model 

parameters such as pre-processing and window 

width for variable selection. Blind samples were 

then loaded into the model for comparison with the 

training data and the “predicted concentration vs. 

actual concentration” plots generated. 
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Statistical Model Results 

Figure 6 shows the nominal thermal product for 

each sample plotted against the thermal product 

predicted by the model, with the theoretically 

“perfect 1:1 line” in green and the “actual model 

line” in red. 

  

 

Figure 6: Nominal thermal product vs. predicted thermal product via the iPLS model. 

 

The model demonstrates excellent predictive 

capabilities with an RMSEC = 16.51 J/(m2 K s0.5) 

and an RMSECV = 17.86 J/(m2 K s0.5). Therefore, 

the model should generalise other samples with 

thermal products in a similar region to the training 

data; with samples in regions such as 100-600 J/(m2 

K s0.5) needing additional testing for full validation. 

R2C and R2CV were both 0.999 (3 d.p.) indicating 

strong linearity in the model. 

A set of four blind samples were processed based 

on the above model, further confirming the 

robustness of the predictive model, the results of 

which are detailed in Table 5. 

 

Table 5: Results of processed samples. 

Samples # Nominal TP 

(J/(m2 K s0.5)) 

Predicted TP 

(J/(m2 K s0.5)) 

Error From Nominal (%) 

1 812.0 819.5 0.9 

2 938.0 914.5 2.5 

3 1591 1590.0 0.1 

4 1591 1594.4 0.2 

 

The predicted thermal product values were in close 

agreement with their nominal counterparts, with 

errors ranging from 0.1% to 2.5%. Most samples 

exhibited less than 1% deviation, demonstrating 

strong consistency across different thermal product 

values. Even for the Sample 2 outlier, the error 

remained within an acceptable range, suggesting 

the model is reliable for practical application. There 

may also be a larger uncertainty in the nominal TP 

value for sample 2, increasing the actual accuracy 

of the model further. Overall, the blind test 
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highlights the strong generalisation capability of the 

model within the tested region. 

 

Preliminary Porcine Testing 

Preliminary ex-vivo measurements were performed 

on porcine belly tissue using the diamond-tipped 

sensor G-1-Dev-001 prior to extensive biological 

tissue testing. Four distinct tissue types skin, fat, 

muscle, and fascia were characterised – with 2.9W 

over a time span of 1 second being applied to all 

samples. The experimental setup is shown in 

Figure 7. 

 

 

Figure 7: Preliminary porcine testing using the novel diamond-based thermal sensor G-1-Dev-001. 

 

The experimental results are shown in Figure 8. 

Clear differentiation between tissue types was 

observed, consistent with their expected different 

thermal product values, the curves showing the 

different values of thermal product for each layer. 

These findings provide an initial indication that the 

sensor can clearly discriminate between different 

biological tissues, and they align with trends 

reported in previous studies using earlier thin-film 

sensors. Further analysis and systematic validation 

are carried out and will be the subject of the next 

paper.
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Figure 8: Measured temperature response of porcine skin, subcutaneous fat, muscle and fascia. Air and distilled 

water for calibration. 

 

This dataset was used to calculate the thermal 

product of porcine tissues by establishing a linear 

calibration between air (TPair = 6) and water 

(TPwater = 1582). Using this relationship (0.013090 

°C/TP), the thermal product values were 

determined as follows: TPskin = 1395, TPfat = 1140, 

TPmuscle = 1559, TPfascia = 1327. These values are 

consistent with previously reported measurements, 

with expected variations attributable to the ex-vivo 

conditions (frozen storage, absence of perfusion). 

The results support the feasibility of the sensor for 

differentiating soft tissues and motivate further 

work on in-vivo testing. 

 

Discussion 

The experimental validation confirms the 

performance improvements predicted in Part A. 

Calibration with air and water demonstrated 

sensitivities of 0.013090°C/TP, representing 12.6-

fold improvements over thin-film based thermal 

product probes [6,8]. Glycerol interpolation yielded 

a 1.01% error against an open literature published 

value (published value error given as 2.5%), 

demonstrating quantitative capability across 

clinically relevant thermal product ranges. 

Repeatability analysis across multiple sessions 

showed coefficients of variation below 1% for all 

materials, substantially better than the <5% CV 

typically required for clinical instruments. 

Measurement uncertainties were conservatively 

estimated at ±0.32°C for water, corresponding to 

±0.23 J/(m2 K s0.5) in thermal product. These 

uncertainties translate to signal-to-noise ratio of 

54:1 at 27°C for distinguishing normal from 

cancerous skin (ΔTP ≈ 380 J/(m2 K s0.5)), 

comfortably exceeding the 3:1 minimum typically 

required for reliable clinical detection [7]. 

Predictive modelling with iPLS confirmed strong 

generalisability (R² = 0.999), with blind sample 

errors of 0.1–2.5%. This demonstrates the 

robustness of the approach and its potential for 

application to unknown samples. Preliminary 

porcine testing further supports biological 

relevance, showing clear discrimination of skin, fat, 

muscle, and fascia. These results align with 

previous thin-film sensor studies [4,8] but 

demonstrate substantially improved sensitivity and 

robustness. 
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Current diagnostic practice relies on visual 

inspection with accuracies of 60–80%, followed by 

invasive biopsy as the gold standard. The present 

sensor demonstrates the potential to achieve >95% 

discrimination accuracy based on thermal product 

differences, with sub-second measurement times. 

Future work will focus on systematic biological 

tissue validation, standardisation of measurement 

protocols, and in vivo clinical trials. 

 

Conclusions 

Experimental validation confirmed the diamond-

tipped sensor demonstrated enhanced performance, 

achieving 12.6-fold sensitivity gains, <1% 

repeatability error, and SNR values well above the 

3:1 clinical threshold. Blind sample validation and 

preliminary porcine testing demonstrated robust 

material and tissue discrimination. Together, these 

results highlight the strong clinical promise of 

diamond-tipped thermal based sensing for rapid, 

non-invasive skin cancer detection. 
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